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Using the new equation of state density motivated by the generalized uncertainty rela-
tion in the quantum gravity, we investigate entropy of a black line on the background
of the three-dimensional BTZ. In our calculation, we need not introduce cutoff and
can remove the divergent term in the original brick-wall method via the new equation
of state density. And it is obtained that the entropy of the black line is proportional
to the area of the horizon (perimeter). Further it is shown the entropy of black line
is the entropy of quantum state on the surface of horizon (perimeter). The black line
entropy is the intrinsic property of the black hole. The entropy is a quantum effect.
By using quantum statistical method, we directly obtain the partition function of Bose
field and fermi field on the background of the black line. The difficulty to solve wave
equation of various particles is avoided. We offer a new simple and direct way for cal-
culating the entropy of various spacetime black holes (black plane, black line and black
column).

KEY WORDS: entropy of BTZ black hole; quantum statistics; generalized uncertainty
relation.
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1. INTRODUCTION

Entropy of the black hole is one of the important subjects in theoretical
physics. Since entropy has statistical meaning, the understanding of entropy in-
volves the sense of the microscopic essence of the black hole. Fully understanding
of it needs a good quantum gravitation theory. However, at present the work of it
is not satisfying. How to measure the microscopic state of black hole by entropy
is not understood very well. The statistical origin of the black hole is not solved
yet (Liberati, 1997). On the other hand, Since Bekenstein and Hawking derived

1 Department of Environment and safety Engineering, North University of China, Taiyuan 030051,
P.R. China.

2 Department of Physics, Yanbei Normal Institute, Datong 037009, P.R. China; e-mail: zhaoren2969@
yahoo.com.cn.

1163
0020-7748/06/0600-1163/0 C© 2006 Springer Science+Business Media, Inc.



1164 Ren and Shuang

that the entropy of the black entropy is proportional to the area of the horizon
(Bekenstein, 1973; Hawking, 1975; Gibbons and Hawking, 1977), investigating
the thermal property (Zhao et al., 2001) is one important subject. Especially there
have been a number of efforts in the past several years aimed at the entropy of
black hole. Many methods of calculating entropy have emerged (Hochberg et al.,
1993; Padmanaban, 1989; Li and Zhao, 2000; Hooft, 1985; Cognola and Lecca,
1998; Cai et al., 1998). One frequently used method is the brick-wall method
advanced by G’t Hooft (1985). This method is used to study the statistical proper-
ties of the free scalar field and fermi field in asymptotically flat spacetime under
various spherical coordinates (Solodukhin, 1995; Zhao et al., 2001; Carlip, 1995;
Strominger, 1998; Jing and Yan, 2000) and it is found that the general expression
of the black hole entropy consists of a term which is proportional to the area of
its horizon and a divergent logarithmic term which is not proportional to the area
of the horizon. However it is doubted that, (1) to obtain that entropy of the black
hole is proportional to the area of the horizon we must introduce cutoff; (2) state
density diverges near the horizon; (3) to obtain that the entropy of a black hole is
proportional to the area of its horizon the logarithmic term is left out and L3 (L is
a distance between event horizon and a point outside horizon at infinite distance ,
that is L >> r+) is considered as the contribution of distant vacuum surrounding
the system; (4) it is complicated to derive the wave function of the scalar or Dirac
field on the background of various black hole by WKB approximation; (5) how
to compute entropies of high-dimensional spacetime, lower-spacetime and non-
asymptotic spacetime. The above problems with the original brick-wall method
are unnatural and insuperable.

In the other hand, there has been much interest recently in the region of lower-
dimensional gravitation theory. Recently, the research given for two-dimensional
black hole thermodynamics shows that entropy satisfies area relation and the sec-
ond law of thermodynamics (Myers, 1994; Russo, 1995; Hayward, 1995; Gao
and Shen, 2003). Banados, Teitelboim and Zanelli (BTZ) derived a black hole
solution in the three-dimensional gravitation theory. This solution is depicted
by mass and charge. The solution is asymptotically anti-de Sitter but not is
asymptotically flat (Banados et al., 1992). It is similar to the two-dimensional
case. This solution does not contain the complicated dynamics freedom of four-
dimensional Einstein gravitation theory. Since there is not complexity of free-
dom, the BTZ black hole may be taken as a candidate studying the quantum
property of the black hole. As the area law is a general property of a black
hole, validating the area relation of BTZ black hole should be very important.
However, we now can’t assert that the area relation is valid in BTZ black hole.
The mass entropy of BTZ black hole does not satisfy the area relation just as
the result given by (Ichinose and Satoh, 1995). And the geometric structure of the
BTZ black hole is different from a usual four-dimensional Schwarzschild black
hole.
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Recently, (Li, 2002; Zhao et al., 2001; Liu et al., 2003) obtained the new
phase volume and calculated the entropy of spherically symmetric black hole
via the new equation of state density motivated by the generalized uncertainty
relation. The results showed that entropy of black hole only contained the term
that is proportional to the area of the horizon. There are not other divergent terms.
A new simple and direct way for discussing statistical origin of the black hole is
offered.

We generalize the method given by Zhao et al. (2001) to investigate the en-
tropy of BTZ black hole and obtain that the entropy of the black line is proportional
to the area of the horizon (perimeter). However, using the new equation of state
density improved by the generalized uncertainty relation, we only need research
in the lamella near the horizon under Planck scale and need not introduce cutoff.
Such entropy is the number of quantum state on the surface of black hole horizon.
The black line entropy is the intrinsic property of the black hole. The entropy is a
quantum effect. By using quantum statistical method (Zhao et al., 2001), we avoid
the difficulty to solve wave equation of various particles. We offer a new simple
and direct way for calculating the entropy of various spacetime black holes. In this
paper, we take the simplest function form of temperature (C = G = KB = 1).

2. BOSONIC ENTROPY

Generalized uncertainty relation (Chang et al., 2002)

�x�p≥h̄ + λ

h̄
(�p)2. (1)

According to (1), the minimal uncertainty degree of location is 2
√

λ under
Planck scale. In V dDP phase volume, the number of quantum states is given
by

V dDp

(2πh̄)D(1 + λp2)D
, (2)

where λ is the measure of Planck length, D is a dimension factor.
Three-dimensional BTZ black hole metric is given by

ds2 = −N2dt2 + N−2dr2 + r2(Nϕdt + dϕ)2, (3)

N2 = −M + r2

l2
+ J 2

4r2
, Nϕ = − J

2r2
, l2 = − 1

�
, (4)
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where M and J are the mass, angular momentum, of a black hole, respectively. �

is the cosmological constant. Equation of horizon can be written as

N2 = 1

l2r2
(r2 − r2

+)(r2 − r2
−) = 0, (5)

here we define r+ and r− are

r± =
√

Ml

[
1

2

(
1 ±

√
1 − J 2

M2l2

)]1/2

. (6)

Because the nonextreme BTZ black holes satisfy the relation Ml > J , r+ and
r− are the locations of outer event horizon and inner Cauchy horizon respectively.
Hawking radiation temperature is

TH = r2
+ − r2

−
2πr+l2

. (7)

In the view of the Tolman (1934), the natural radiation temperature got by
the observer at r is as follows:

T = TH√−g̃tt

, (8)

where

−g̃tt = −gttgϕϕ − g2
tϕ

gϕϕ

= −M + r2

l2
+ J 2

4r2
. (9)

For bosonic gas, we calculate the partition function of the system as follows:

ln Z = −
∑

i

gi ln(1 − e−βεi ). (10)

From (2), in unit area, the density of quantum states is given by

g(ν) = j
1

(2πh̄)2

2πp2

(1 + λp2)2
, (11)

where j is the spinning degeneracy of particles. For space-time (3), the area
element of a surface t = const is

dS = 2π
√

gϕϕgrrdr. (12)
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So the partition function for massless bosons is

ln Z = −
∫

2π
√

gϕϕgrrdr
∑

i

gi ln(1 − eβεi )

= −
∫

2π
√

gϕϕgrrdr

∫ ∞

0
dg(ν) ln(1 − e−βhν)

= j

∫
2π

√
gϕϕgrrdr

∫ ∞

0

2πβh

(1 + λ4π2ν2)2(eβhν − 1)
ν2dν

= jβ0

∫
2π

√
gϕϕgrrdr

∫ ∞

0

2πh
√−g̃tt

(1 + λ4π2ν2)2(eβhν − 1)
ν2dν, (13)

where β = β0
√−g̃tt , TH = 1

β0
is the radiation temperature of the black hole, j is

the spinning degeneracy of radiation particles. According to the relation between
free energy and partition function, we have

F = − 1

β0
ln Z = −j

∫
2π

√
gϕϕgrrdr

∫ ∞

0

2πh
√−g̃tt

(1 + λ4π2ν2)2(eβhν − 1)
ν2dν.

(14)

Thus, the entropy of the system can be expressed as

Sb = β2
0
∂F

∂β0
= jβ0

∫
2π

√
gϕϕgrrdr

∫ ∞

0

2πβνh2√−g̃tt e
βhν

(1 + λ4π2ν2)2(eβhν − 1)2
ν2dν

= j
1

2πβ2
0

∫ √
gϕϕgrr

(−g̃tt )
dr

∫ ∞

0

exx3dx(
1 + λ x2

β2
0 (−g̃t t )

)2
(ex − 1)2

, (15)

where x = βhν, suppose

I1(g̃tt ) =
∫ ∞

0

exx3dx(
1 + λ x2

β2
0 (−g̃t t )

)2
(ex − 1)2

≈
∫ ∞

0

(x + x2)dx(
1 + λ x2

β2
0 (−g̃t t )

)2 = β2
0 (−g̃tt )

2λ
+ π

4
β3

0

(−g̃tt

λ

)3/2

. (16)

In (15), In order to calculate the entropy of black hole we integrate near the
horizon of the black hole and take the integral region[r+, r+ + ε] with respect to
r . Substituting (16) into (15), we obtain



1168 Ren and Shuang

Sb = j
1

2πβ2
0

∫ r++ε

r+

√
gϕϕgrr

(−g̃tt )
dr

[
β2

0 (−g̃tt )

2λ
+ π

4
β3

0

(−g̃tt

λ

)3/2
]

= j
r+

4πλ

√
2ε

κ
+ j

r+
8

β0
ε

λ3/2
. (17)

We are only interested in the contribution from the vicinity near the horizon.
According to generalized uncertainty relation (1), we derive that the minimal
uncertainty degree is 2

√
λ under Planck scale.

Hence, taking as the minimal length of linear element of pure spacetime,
2
√

λ, has the following form.

2
√

λ =
∫ r++ε

r+

√
grrdr ≈

∫ r++ε

r+

dr√
2κ(r − r+)

=
√

2ε

κ
, (18)

where κ is the surface gravity at the horizon of black hole and it is identified as
κ = 2πβ−1

0 . Thus we naturally derive the expression of entropy

Sb = j
A(r+)

λ0
, (19)

where λ0 = 1
4λ1/2

[
1
π2 + 1

]
, A(r+) = 2πr+ is the area of the horizon (perimeter).

3. FERMI ENTROPY

For fermi gas, the partition function is as follows:

ln Z =
∑

i

gi ln(1 + e−βεi ). (20)

From (11) and (15), we have

Sf = β2
0
∂F

∂β0
= i

1

2πβ2
0

∫ √
gϕϕgrr

(−g̃tt )
dr

∫ ∞

0

exx3dx(
1 + λ x2

β2
0 (−g̃t t )

)2
(ex + 1)2

. (21)

Let

I2 =
∫ ∞

0

exx3dx(
1 + λ x2

β2
0 (−g̃t t )

)2
(ex + 1)2

=
∫ ∞

0

exx3dx

(1 + µx2)2(ex + 1)2
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= − ∂

∂µ

∫ ∞

0

exxdx

(1 + µx2)(ex + 1)2
≈ − ∂

∂µ

∫ ∞

0

(x + x2)dx

(1 + µx2)(x + 2)2

= − ∂

∂µ

∫ ∞

0

[
+ 3µ

4µ + 1

x

(µx2 + 1)
− 3

4µ + 1

1

(x + 2)
+ 1 − 2µ

4µ + 1

1

(µx2 + 1)

+ 2

(x + 2)2(1 + µx2)

]
dx

≈ ∂

∂µ

[
3

2(4µ + 1)
ln(1 + µx2)− 3

4µ + 1
ln(x + 2) + 1 − 2µ

4µ + 1

1√
µ

arctgx
√

µ

]∞

0

− ∂

∂µ

[
1

4(µ + 1)
ln(1 + µx2)− 1

2µ + 1
ln(x + 1) −

√
µ

2(µ + 1)
arctgx

√
µ

]∞

0

≈ 1

16
µ−2 = 1

16
β4

0

(−g̃tt

λ

)2

, (22)

we obtain the entropy of Fermi field

Sf = i

∫ r++ε

r+

rβ2
0

32π

√−g̃tt

λ2
dr = i

2

3

A(r+)

λ1/2
, (23)

where i is the spinning degeneracy of fermions.

4. CONCLUSION

Based on the above analysis, by using statistical method, we directly obtain
the partition function of various fields on the background of BTZ black hole
and avoid the difficult to solve wave equations. In our calculation, using the new
equation of state density motivated by the generalized uncertainty relation, we
need not introduce cutoff. The problem why the entropy of the radiation field
outside the horizon is the entropy of the black hole is solved. There are not the left
out term and the divergent logarithmic term in the original brick-wall method. The
method to calculate entropies of black hole via the generalized uncertainty relation
is valid not only for four-dimensional spacetimes but also for three-dimensional
spacetimes. Thus our methods have universality.

As early as 1992, Li and Liu phenomenally proposed the state equations
motivated by gravity and gave the state equations of the thermal radiation filed
near the horizon of black hole (Li and Liu, 1992). Using the Li-Liu equation,
Wang calculated the entropy of a black hole and obtained that the entropy of the
black hole is proportional to the area of the horizon (Wang, 1994). Moreover, in
his calculation the left out term and the divergent logarithmic term in the original
brick-wall method don’t exist. In this paper, through investigating BTZ black hole,
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we also obtain that the entropy of the black line is proportional to the area of the
horizon in the case that there is not the divergent term. We start with different
consideration, but obtain the same conclusion. There is an inherent relationship
between the Li-Liu equation and generalized uncertainty relation not only in four-
dimensional spacetime but also in lower-dimensional spacetime. So the inherent
relationship between the Li-Liu equation and generalized uncertainty relation is a
general problem. Solving this problem is an important subject of theoretic physics.

ACKNOWLEDGMENT

This project was supported by the National Natural Science Foundation of
China under Grant No. 10374075 and the Shanxi Natural Science Foundation of
China (No 2006011012).

REFERENCES

Banados, M., Teitelboim, C., and Zanelli, J. (1992). Phys. Rev. Lett. 69, 1849.
Bekenstein, J. D. (1973). Phys. Rev. D 7, 2333.
Cai, R. G., Ji, J. Y., and Soh, K. S. (1998). Class Quantum Grav. 15, 2783.
Carlip, S. (1995) Phys. Rev. D 51, 632.[gr-qc/9409052]
Chang, L. N., Minic, D., Okaruma, N., and Takeuchi, T. (2002). Phys. Rev. D 65, 125028.
Cognola, G. and Lecca, P. (1998). Phys. Rev. D 57, 1108.
Gao, C. J. and Shen, Y. G . (2003). Science of China G. 33, 561.
Gibbons, G. W. and Hawking, S. W. (1977). Phys. Rev. D 15, 2738.
Hawking, S. W. (1975). Commun Math Phys. 43, 199.
Hayward, J. D. (1995). Phys. Rev. D 52, 2239.
G’t Hooft. (1985) Nucl. Phys. B 256, 727.
Hochberg, D., Kephart, T. W., and York, J. W. (1993). Phys. Rev. D 48, 479.
Ichinose, I. and Satoh, Y. (1995). Nucl. Phys. B 447, 247.
Jing, J. L. and Yan, M. L. (2000) Chin. Phys. 9, 389.
Li, X. and Zhao, Z. (2000). Phys. Rev. D 62, 104001.
Li, X. (2002). Phys. Letts. B 540, 9; Phys. Letts. B 537, 340.
Li, L. X. and Liu, L. (1992). Phys. Rev. D 46, 3296.
Liberati, S. (1997). Il Nuovo Cimento B 112, 405.
Liu, C. Z., Li, X., and Zhao, Z. (2003). International Journal of Theoretical Physics. 42, 2081.
Myers, R. C. (1994). Phys. Rev. D 50, 6412.
Padmanaban, T. (1989). Physics letters A. 136, 203.
Russo, J. G. (1995). Phys. Lett. B359, 69.
Solodukhin, S. N. (1995). Phys. Rev. D 51, 609.
Strominger, A. (1998). JHEP9802, 009. [hep-th/9712251]
Tolman, R. C. (1934). Relativity, Thermodynamics and Cosmology. Oxford University Press, Oxford.
Wang, D. X. (1994). Phys. Rev. D 50, 7385.
Zhao, R. and Zhang, S. L. (2004). Gen. Rel. Grav. 36, 2123.
Zhao, Z. (1999). Thermal Properties of Black Hole and Singularities of Space-time Beijing Normal

University Press 65 (in Chinese).
Zhao, R., Wu, Y. Q., and Zhang, L. C. (2003). Class. Quantum. Grav. 20, 4885
Zhao, R., Zhang, J. F., and Zhang, L. C. (2001). Nucl. Phys. D 609, 247


